evolution strategy - ορισμός. Τι είναι το evolution strategy
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι evolution strategy - ορισμός


Evolution strategy         
MATHEMATICAL OPTIMIZATION TECHNIQUE
Evolution strategies; Derandomized Evolution Strategy; Evolution Strategies
In computer science, an evolution strategy (ES) is an optimization technique based on ideas of evolution. It belongs to the general class of evolutionary computation or artificial evolution methodologies.
evolution strategy         
MATHEMATICAL OPTIMIZATION TECHNIQUE
Evolution strategies; Derandomized Evolution Strategy; Evolution Strategies
(ES) A kind of evolutionary algorithm where individuals (potential solutions) are encoded by a set of real-valued "object variables" (the individual's "genome"). For each object variable an individual also has a "strategy variable" which determines the degree of mutation to be applied to the corresponding object variable. The strategy variables also mutate, allowing the rate of mutation of the object variables to vary. An ES is characterised by the population size, the number of offspring produced in each generation and whether the new population is selected from parents and offspring or only from the offspring. ES were invented in 1963 by Ingo Rechenberg, Hans-Paul Schwefel at the Technical University of Berlin (TUB) while searching for the optimal shapes of bodies in a flow. (1995-02-03)
Natural evolution strategy         
Natural evolution strategies (NES) are a family of numerical optimization algorithms for black box problems. Similar in spirit to evolution strategies, they iteratively update the (continuous) parameters of a search distribution by following the natural gradient towards higher expected fitness.